On edge-colouring indifference graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Edge-Colouring Indifference Graphs

Vizing's theorem states that the chromatic index 0 (G) of a graph G is either the maximum degree (G) or (G) + 1. A graph G is called overfull if jE(G)j > (G)bjV (G)j=2c. A suucient condition for 0 (G) = (G) + 1 is that G contains an overfull subgraph H with (H) = (G). Plantholt proved that this condition is necessary for graphs with a universal vertex. In this paper, we conjecture that, for ind...

متن کامل

Edge Colouring Reduced Indifference Graphs

The chromatic index problem { nding the minimum number of colours required for colouring the edges of a graph { is still unsolved for indiierence graphs, whose vertices can be linearly ordered so that the vertices contained in the same maximal clique are consecutive in this order. Two adjacent vertices are twins if they belong to the same maximal cliques. A graph is reduced if it contains no pa...

متن کامل

On Edge-colouring Indiierence Graphs on Edge-colouring Indiierence Graphs

Vizing's theorem states that the chromatic index 0 (G) of a graph G is either the maximum degree (G) or (G) + 1. A graph G is called overfull if jE(G)j > (G)bjV (G)j=2c. A suu-cient condition for 0 (G) = (G)+1 is that G contains an overfull subgraph H with (H) = (G). Plantholt proved that this condition is necessary for graphs with a universal vertex. In this paper, we conjecture that, for indi...

متن کامل

On the Edge-colouring of Split Graphs on the Edge-colouring of Split Graphs

We consider the following question: can split graphs with odd maximum degree be edge-coloured with maximum degree colours? We show that any odd maximum degree split graph can be transformed into a special split graph. For this special split graph, we were able to solve the question, in case the graph has a quasi-universal vertex.

متن کامل

Edge-colouring and total-colouring chordless graphs

A graph G is chordless if no cycle in G has a chord. In the present work we investigate the chromatic index and total chromatic number of chordless graphs. We describe a known decomposition result for chordless graphs and use it to establish that every chordless graph of maximum degree ∆ ≥ 3 has chromatic index ∆ and total chromatic number ∆+1. The proofs are algorithmic in the sense that we ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 1997

ISSN: 0304-3975

DOI: 10.1016/s0304-3975(96)00264-2